
Int. J. Computer Applications in Technology, Vol. , No. 1

Copyright © 2012 Inderscience Enterprises Ltd.

Extensions to Ciphertext-Policy
Attribute-Based Encryption to
Support Distributed Environments

Daniel Servos,
Department of Computer Science, Lakehead University,

Thunder Bay ON P7B 5E1, Canada

E-mail : dservos@lakeheadu.ca

Sabah Mohammed*

Department of Computer Science, Lakehead University,

Thunder Bay ON P7B 5E1, Canada

E-mail : mohammed@lakeheadu.ca
*
The author for correspondence

Jinan Fiaidhi
Department of Computer Science, Lakehead University,

Thunder Bay ON P7B 5E1, Canada

E-mail : jfiaidhi@lakeheadu.ca

Tai hoon KIM
Department of Computer Engineering, Glocal Campus,

Konkuk University, Korea

E-mail :taihoonn@kku.ac.kr

Abstract: We present several extensions to the ciphertext-policy attribute-based encryption
(CP-ABE) scheme, first introduced by Bethencourt, et. al. (2007), to support operation in a
distributed environment with multiple attribute authorities. Unlike other efforts in creating a
multi-authority attribute-based encryption schemes our extensions allow for each authority
to be designated a subset of attributes and work independently in creating user keys (i.e. a
user need only contact a single authority for their secret key). Additionally, we show that
the presented extensions have a minimal impact on performance compared to standard CP-
ABE and that both the performance of CP-ABE and our extensions can be improved by
computing parts of the user and authority keys in parallel. We also discuss the use of CP-
ABE in protecting data confidentiality in public cloud environments.

Keywords: Attribute-Based Encryption, Distributed Computing, Cloud Computing,

Cryptography, Access Control

Reference: to this paper should be made as follows: Servos D., Mohammed S., Fiaidhi J.,

and Kim T. H. `Extensions to Ciphertext-Policy Attribute-Based Encryption to Support

Distributed Environments', Int J. Computer Applications in Technology, Vol. x, No. x, pp.

xxx-xxx

Biographical notes: Daniel Servos is a Graduate Student with the Department of

Computer Science, Lakehead University working on Cloud Computing security and
dependability.

Sabah Mohammed is a Professor with the Department of Computer Science, Lakehead

University, Ontario-Canada. Dr. Mohammed research is focused on Medical Informatics

and Cloud Computing. He is also an Adjunct Professor with the University of Western

Ontario-Canada.

mailto:mohammed@lakeheadu.ca

2 D. Servos et al.

Jinan Fiaidhi is a Professor and Graduate Coordinator with the Department of Computer

Science, Lakehead University. She is also an Adjunct Research Professor with the
University of Western Ontario. Her research interest is on Ubiquitous Learning.

Tai hoon Kim is a Professor with Department of Computer Engineering, Glocal Campus,

Konkuk University, Korea. He is a vice-president of Science and Engineering Research
Support soCiety. Dr. Kim research focus is on Security.

1 Introduction
The increasingly popular cloud computing paradigm brings

new opportunities to reduce hardware, maintenance and

network costs associated with the traditional infrastructure

required to offer large scale internet based services or even

smaller localized application and storage solutions.

However, with the dynamic scalability, reduced risk and

potential cost savings comes a loss of control that creates

new challenges for adopting cloud based infrastructure.

In particular, in the case of the health care industry, the need

for cost efficient and low maintenance Electronic Health

Record (EHR) systems is clear (Urowitz et al., 2001).

However, while frameworks and architectures exist for

managing and scaling access to EHRs in the cloud (Itani,

Kayssi and Chehab, 2009) (Chow et al., 2009), data privacy

and enforcing access control policies which comply with

local and global privacy laws are significant barriers

blocking adoption of public cloud offerings.

Ensuring data privacy on a potentially untrustworthy public

cloud is still one of the open research problems in cloud

computing (Mohammed, Servos and Fiaidhi, 2010)

(Mohammed, Servos and Fiaidhi, 2011) Traditional data

privacy measures (such as employing traditional symmetric

encryption schemes) are ineffective on the cloud platform,

while current research efforts tend to focus on solutions

requiring additional trusted computing or cryptographic

coprocessors hardware (Zhang, Cheng, and Boutaba, 2010)

(Armbrust, et al. 2009) not yet offered by many public cloud

providers.

Attribute based encryption, and in particular ciphertext-

policy attribute-based encryption (Bethencourt, Sahai, and

Waters, 2007) offers the potential for access policies to be

embedded in encrypted documents and enforced both on

and off the cloud, independently of the system which stores

the documents. This is accomplished by assigning users’

sets of “attributes” (strings associated with bit encoded

values) which describe their role in relation to the embedded

access policy and encrypting documents not with a key but a

policy that must be met for decryption of the document to

occur (this process is further detailed in section 2).

This paper outlines a novel extension to ciphertext-policy

attribute-based encryption (CP-ABE) for protecting records

both on and off the cloud. Our extensions add support for

multiple distributed attribute authorities, capable of

generating user keys, which share some given subset of

attributes for which they are authorized. We introduce a new

hierarchal authorization data structure (section 3.1) for

attribute authorities which dictate the private and shared set

of constant and variable attributes a given authority will

have permission to delegate to users. A new not equals

operation (section 3.5) for CP-ABE is detailed and its

implications described, performance improvements (section

4.3) are discussed and tested, and a means for creating

policies based on a user’s origin (to which attribute

authority they belong) is detailed (section 3.6). We present

an implementation of our scheme (section 4.1) and evaluate

its performance against Bethencourt, et al.’s (2007) CP-

ABE implementation. A security evaluation and discussion

is also presented in section 4.4.

2 Ciphertext-Policy Attribute-Based Encryption

2.1 Description

Ciphertext-policy attribute-based encryption (CP-ABE)

(Bethencourt, Sahai, and Waters, 2007) offers a novel

encryption scheme which continues the work on attribute

based encryption to enable a complex tree based access

policy to be embedded in the ciphertext rather than the key

as with Key-Policy Attribute-Based Encryption (KP-ABE)

(Goyal et al., 2006). CP-ABE also introduces “variable

attributes” which use a set of traditional attributes to

represent a value that can be evaluated with more complex

operations (including >, <, <. > and =). This allows for users

to be assigned attributes (e.g. “IS_DOCTOR” or “AGE =

36”) and documents to be encrypted with complex access

policies based on these attributes such as “(IS_DOCTOR

OR IS_LAB_TECH) AND AGE >= 18 OR

(IS_SYSTEM_ADMIN AND USER_LEVEL > 6)”.

For the cloud, and other instances where a remote system

may not be trusted to enforce access control, CP-ABE offers

a promising alterative. With access polices embedded in the

cipher text, encrypted documents may be stored and

replicated across multiple untrusted system, while keeping

the plain text secure under the given policy. Also, unlike

traditional public key or symmetric encryption, where a

document may only be decrypted by a single key (either the

user’s private key or the symmetric key used to encrypt the

document), CP-ABE offers an alternative where each user

has their own secret key (based on the attributes they have

been assigned) which can decrypt any document for which

there attributes pass the embedded access policy.

CP-ABE accomplishes this through five cryptological

functions, SETUP(), ENCRYPT(PK, M, A),

KEY_GENERATION(MK, S), DECRYPT(PK, CT, SK)

and DELEGATE(SK, S) (see appendix A for detailed

definitions of each). Operation of the system proceeds as

show in Figure 2.1:

Extensions to Ciphertext-Policy Attribute-Based Encryption to Support Distributed Environments 3

Figure 2.1: Operation of the CP-ABE cryptographic

protocol.

1. During the initialization phase the SETUP function is

called by the master authority to create the public (PK) and

master (MK) keys. The public key is published publicly and

the master key is kept in secret by the master authority and

only used during user key generation.

2. After initialization, the master authority may generate a

secret key (SK) for a user of the system using the

KEY_GENERATION function which requires the master

key and the set of attributes (S) assigned to the user by the

authority and send the key to the user over a secure channel.

3. At any time after the public key has been published, a

user may encrypt a document (M) for a given access policy

(A) using the ENCRYPT function with the public key. The

resulting ciphertext (CT) may be stored or shared with any

system while remaining under the given access policy.

4. Once a user has a secret key, the public key and a cipher

text they wish to decrypt they may do so using the

DECRYPT function iff the set of the attributes in their

secret key pass the access policy used during encryption.

5. Once a user has a secret key, they may delegate a subset

of the attributes in their secret key to a third party using the

DELEGATE function.

2.2 Issues for Distributed Systems

For distributed systems CP-ABE presents a significant

bottleneck in the form of a single master authority

responsible for all user key generation which proves

problematic for both scalability and security reasons (i.e. if

the master authority is compromised all encrypted

documents are). Also it is required that a trusted party be

made responsible for running the master authority and

assigning all attributes to users of the system. In cases

where a distributed system involves multiple parties (such

as an EHR system which shares records between multiple

health care institutions) a single party may not be available

that is capable of securely, accurately and efficiently

assigning attributes and generating user keys for all users.

Our extensions aim to resolve these issues by allowing each

party (or domain) to have control over their own set of

attributes, their own user key generation and attribute

assignment while still sharing a common public key and set

of attributes with the other domains making sharing of

encrypted documents between domains possible.

Additionally, this allows for a more scalable and trusted

system as user key generation and attribute assignment is

moved from a single point of failure and bottlenecking to

multiple attribute authorities divided among the domains

that comprise the system.

3 Our Extension’s Constructions

Our construction extends the SETUP, DELEGATE and

KEYGEN functions of the CP-ABE model to enable multi-

authority user key assignment and delegation, while keeping

the encryption (ENCRYPT) and decryption (DECRYPT)

functions the same to enable backwards compatibility with

CP-ABE. Each attribute authority is delegated a set of

attributes for which it has authority over (power to further

delegate the attributes to users) from an offline master

authority. The master authority is only required during the

initial creation of a new user authority or attribute.

The following sub-sections outline the extensions to each

function. As with CP-ABE’s constructions; is a bilinear

group of prime order p and size k for which g is the

generator of and denotes the bilinear

map.

3.1 Authority Hierarchy

The authority hierarchy is a logical layout of all attribute

authorities in the system and their parent/child relationships

to each other. A child authority is granted all attributes of its

parent and ancestors up to the root authority. Thus the root

authority contains the subset of attributes shared by all

authorities in the hierarchy. An example hierarchy is shown

in Figure 3.1.

Figure 3.1: Example authority hierarchy with logical

authorities root, and auth2, and real authorities auth1, auth3

.. auth6.

2 D. Servos et al.

The authority hierarchy data structure can be seen as a tree

(AH) with root node root(AH) representing the root

authority. Decedents of the root node represent authorities

authorized to assign both attributes assigned to their

ancestors (up to the root authority/node) and attributes from

a private set available only to that authority and it’s

decedents in the hierarchy. Each node, x, in the hierarchy

tree contains a unique name referred to as a domain

(domain(x)), the number of constant attributes

(constants(x)) assigned to the authority, the number of

variable attributes (variables(x)) assigned to the authority,

the parent of the authority (parent(x)) and a type of “real” or

“logical” (type(x)). Nodes of type “logical” are considered

to only be place holders for attributes shared among their

decedents. A logical authority is not granted an authority

key and exists only in the representation of the hierarchy

AS. For example, the authority “root” in Figure 3.1 will

cause the creation of 100 constant attributes and 100

variable attributes which will be shared with all descendants

but will not be issued an authority key. Authority “auth1”

will be assigned 10 constant and 50 variable attributes and

will inherit all 200 attributes from the root authority. Similar

“auth3” and “auth4” will be assigned their designated

number of attributes and inherit all attributes from “auth1”

(their parent) and the root authority (auth1’s parent). Like

the root authority, auth2 is logical and will not be granted an

authority key but will share it’s attributes with its

descendants auth5 and auth6 (which also inherit attributes

from the root authority via auth2).

3.2 Setup

Our setup function (Equation 3.1) takes the authority

hierarchy tree (AH) and begins as CP-ABE does, using the

same master key (MK) and public (PK) definitions (only

differing in excluding f from PK and referring to it as the

delegation key) but adds the generation of the set of

attribute authority keys (ASK) based on the attribute set

returned by the AuthAttSet function (Equation 3.2) for each

authority in the given hierarchy. As with Equation A.1 (see

appendix A), is a chosen bilinear group of prime order p

and are randomly generated integers in . We define

auth_index(x) as a function which returns an arbitrary but

always unique integer greater than 0 and less than

INT_MAX for a given authority hierarchy node x.

 ()

 (())

 ()
 (())
 ()

Equation 3.1: Setup Function

 ()

 ()
 (())

 (())

 () (())

 ()

 (()

)

 () (()) (

 ())
 ()
 ((

 (())))
 ()
 ()

 ()

 ()

Equation 3.2: Recursive AuthAttSet Function

In addition to creating the master and public keys, the Setup

function calls the recursive function AuthAttSet to obtain

the set (AS) containing sets for each authority containing

the attributes to be assigned to the respective authority. An

authority’s attribute set is determined by recursively

descending the authority hierarchy and creating a set of

attribute names for each node (with attribute sets for

descendants of that node being unioned with the parent

node). Next the auth_key attribute is added (explained

further in section 3.6), the variable attributes are converted

to constant attributes (via ConvertAtts(S)), the set is added

to AS, and AuthAttSet is called on all children of the node.

With the set of attribute sets complete, the Setup function is

able to compute the set of secret keys (ASK) for each

authority using the KEYGEN function.

As attributes may not be initially assigned a particular

meaning or purpose in the system, a generic attribute name

is created which may be later mapped to a more appropriate

human readable name. Constant attribute names are created

by appending the authority’s domain, the string “_c” and a

number (1 through constants(x) inclusively). Variable

attributes are named similarly (by appending the domain,

string “_v” and a number) but are also given the value of 0

and INT_MAX (INT_MAX being equal to 2b - 1 and b

being the number of bits allowed in the attribute values).

To satisfy the policy tree during decryption, variable

attributes are split into multiple constant attributes each

representing a possible value of a single bit of the variable’s

value. Thus, assigning the same variable attribute to an

authority with a value of 0 and INT_MAX is equivalent to

assigning it the constant variable’s for every possible value

of a bit, making up the variable attribute’s value. This

allows an authority to assign any value for a variable

attribute to a user (by delegating the subset of constant

attributes which make up the correct value in bits for the

delegated value) while only having to hold a key containing

b * 2 constant attributes (where b is the number of bits in a

variable’s value). An example of this can be seen in Table

3.1 where an authority with the variable attributes

Extensions to Ciphertext-Policy Attribute-Based Encryption to Support Distributed Environments 5

“auth1_v0 = 0” and “auth1_v0 = 15” also contains the

subset of constant attributes for “auth1_v0 = 10”.

Variable
Attributes

Constant
Attributes

auth1_v0 =
10

auth1_v0_
flexint_1xxx

auth1_v0_
flexint_x0xx
auth1_v0_
flexint_xx1x
auth1_v0_
flexint_xxx0

auth1_v0 = 0

auth1_v0 =
15

auth1_v0_
flexint_1xxx

auth1_v0_

flexint_0xxx
auth1_v0_
flexint_x0xx
auth1_v0_
flexint_x1xx
auth1_v0_
flexint_xx1x
auth1_v0_
flexint_xx0x
auth1_v0_
flexint_xxx0
auth1_v0_
flexint_xxx1

Table 3.1: Table showing the equivalent constant attributes

for a given set of variable attributes. Assuming INT_MAX

of 15 (i.e. 4 bit variable values).

3.3 User Key Generation

Unlike in CP-ABE, a user’s key is not generated via the

KEYGEN function but delegated off an attribute authority’s

key. This process (detailed in Equation 3.3, where function

H is a hash function, ̃, and ̃ are random numbers and US

is the set of attributes to be assigned to the user) is the same

as the DELEGATE function from CP-ABE but includes the

delegation key, f, as it is omitted from the public key due to

the changes in the Setup function. Also, unlike attribute

delegation in CP-ABE, where a key owner may only

delegate the value of an attribute variable for which they

were assigned, an attribute authority is able to assign any

value of for an assigned variable attribute. This is made

possible due to the way variable attributes are assigned in

our Setup function (i.e. via the attribute authority being

assigned constant attributes for all possible values of bits in

a variable attribute’s value).

 ()

 ̃

 ̃ ̃

 ̃

 ̃
 ̃ () ̃

 ̃

 ̃

 (̃ ̃
 ̃)

Equation 3.3: UserKeyGen Function

Further delegation of attributes at the user level is controlled

by limiting access to the delegation key. A user with the

delegation key may further delegate their attributes into a

new key using the same UserKeyGen function with their

key and a subset of attributes from the set they were

assigned, but may never add more attributes, change

attribute values or combine the attributes with another users.

Allowing users to further delegate their attributes is no more

insecure than the possibility of users sharing a key or the

information which it decrypts but has the advantage of

enabling users to share only parts of their key (some subset

of their assigned attributes) when necessary.

3.4 Encryption and Decryption

Encryption and decryption proceed similar to CP-ABE (so

much so that it is backwards compatible with CP-ABE) but

with a key difference from the CP-ABE implementation. As

one of the performance enhancements presented in the CP-

ABE implementation, an additional constant attribute is

added for each variable attribute containing the decimal

value of the variable. For example, for the variable attribute

“auth1_v0 = 10” the constant attribute “auth1_v0_10”

would be added. This allows for a performance increase

when the policy tree contains an equals requirement on a

variable attribute (e.g. requiring that auth1_v0 being equal

to 10). As this would require each authority being assigned

a constant attribute for each possible value from 0 to

INT_MAX (adding significantly to the time to generate and

the size of an authority key) we have omitted this

enhancement and a policy tree is created which requires all

attributes that make up the value in binary to be present (e.g.

requiring that a key contains attributes for

auth_flexint_1xxx, auth_flexint_x0xx, flexint_xx1x and

flexint_xxx0 rather than just the attribute auth1_v0_10

being present).

3.5 Not Equals

The CP-ABE scheme presented by Bethencourt, et al.

(2007) lacks a not equals operation. Such an operation is

important for at least two cases; the first being excluding a

particular user based on an attribute that most or all users

possess some value for. For example if we assign every user

in the system the variable attribute “user_id” for some

unique value to that user (e.g. “user_id = 4727236”), not

equals would then allow us to exclude a particular user from

decrypting a file by creating an access policy such as

2 D. Servos et al.

“user_id ≠ 9833344”. The second case is for user and

authority key revocation. As with the first case, a policy like

“user_id ≠ 9833344” could be added to all encrypted

documents to block a known-to-be-compromised key from

accessing future files. Similarly, a statement like “auth_key

≠ 2” could be used to revoke access to a whole authority’s

user base in the case that the given authority becomes

compromised.

For our proposes we may define “not equals” as “equal to

any valid value but”, meaning that a user must both have the

given variable attribute and it must not be equal to the given

value to pass the access policy (users missing the attribute

completely would also be rejected). We may construct such

an access tree as follows (for the example of “user_id ≠ 4”

and an INT_MAX of 15):

Figure 3.2: Access tree for user_id ≠ 4

That is essentially by converting the value to binary,

“0100”, inverting the 1s and 0s, “1011”, and requiring the

attribute for each bit. E.g. “1 of (user_id_flexint_1xxx,

user_id_flexint_x0xx, user_id_flexint_xx1x,

user_id_flexint_xxx1)”.

3.6 User Origin

Our scheme provides a means of creating access policies

based on a given user’s origin (in this case to which

attribute authority they belong) via the “auth_key” attribute

added to every authority key in the AuthAttSet function

(Equation). Every authority in the hierarchy is assigned a

unique value of auth_key during authority key creation. It is

expected that each attribute authority includes this attribute

in each user’s attribute set. However, even if a dishonest

authority or user (via delegation of a subset of their key)

omitted the attribute they would still fail to pass access

policies requiring or excluding a given auth_key value (as

the not equals operation requires the attribute be present and

have at least some value).

As attribute authorities likely represent different institutions

or departments in the system, this feature is useful for

limiting access to or from a given institution/department

when all other required attributes are shared and no existing

attribute performs a similar role. Additionally, the

“auth_key” attribute is used as part of our revocation system

for revoking compromised authority keys (see section 3.7).

3.7 Revocation

3.7.1 User Key Revocation and Expiration

As with the CP-ABE scheme, user keys may be set to expire

by including a variable attribute, an expiry date and

ensuring that all encrypted documents contain a policy

requiring that attribute to be greater than the current date.

This would effectively limit expired user keys to decrypting

documents encrypted before the key expired (which may

already have been decrypted/compromised by the user).

Revoking the user key then becomes simply a case of not

renewing the key. Additionally in cases where users have no

need to view documents past a set date, a lower limit may

be placed on the expiry attribute to limit access to old

documents.

As our scheme adds a not equals operation we are also

given the option of revoking access to a user by excluding

an attribute value unique to that user. For example, if all

users are given a unique value for the variable attribute

“user_id” one may simply exclude a given user by adding a

policy such as “user_id ≠ 123456” to deny a user with the id

123456 the ability to decrypt the document. Even if the user

removed the “user_id” attribute from their key, they would

still fail to pass the access policy due to the way not equals

is defined.

3.7.2 Attribute Authority Revocation and Expiration

The addition of the “auth_key” attribute in AuthAttSet

function (Equation) allows us to deny access to users whose

key was generated by a set authority (i.e. their origin, see

section 3.6) as we could an individual user via a “user_id”

attribute. If an attribute authority were to become

compromised, a notice could be posted in a public

revocation list and future documents could be encrypted

with the requirement that “auth_key ≠ 5” for example, if the

authority with an auth_index of 5 was compromised. This

would effectively prevent any user from that authority from

decrypting future documents.

As with user keys, attribute authority keys could also be

created with a set expiry attribute which would in turn be

delegated on to its users. However, unlike the user key

expiry date, which may be set to only days or hours in the

future an authority key would have to be set to expire

significantly longer in the future (possibly months or a year)

as the process for creating authority keys is more costly and

involves some level of manual intervention by a system

administrator.

4 Implementation and Evaluation
4.1 Implementation

To test and fully evaluate our extensions to CP-ABE, a C++

based implementation was created by modifying

Bethencourt, et al.’s (2006) CP-ABE implementation, to add

our extended functions, features and distributed authority

setup. As our implementation is based on the CP-ABE

implementation it uses the same PBC library

(http://crypto.stanford.edu/pbc/) for the algebraic operations

and only supports Unix and Linux based systems.

Our Setup (Equation 3.1), AuthAttSet (Equation 3.2) and

UserKeyGen (Equation 3.3) functions were added to the

CP-ABE implementation. The constant attribute added for

each variable attribute containing the decimal value of the

Extensions to Ciphertext-Policy Attribute-Based Encryption to Support Distributed Environments 7

variable was removed (see section 3.4) and the

implementation was split into three components (one for the

master authority, one for attribute authorities and one for the

users of the system). A hash table was added to store all

components of an authority key in memory (mapping an

attribute name to the values of Dj and D`j (() and

 respectively)) for the attribute authority component. This

allows for the authority key to be read into memory during

the initialization of the attribute authority rather than read

from the hard drive for each user key request. As the

authority key grows linearly in size with the number of

attributes (Figure 4.1) this becomes a required optimization

for systems that must fulfill a large number of user key

generation requests.

Figure 4.1: Attribute authority key size vs number of variable

and constant attributes.

Finally, a Linux daemon was created for the attribute

authority component which listens for connections on a

local socket and responds to user key generation requests. A

Java based client API was also created to communicate with

attribute authority daemon as well as a Java API which uses

the user component for encrypting and decrypting strings.

4.2 Performance Evaluation

To evaluate the performance of our extensions we examined

our implementation in terms of number of constant

attributes required to represent the same variable attribute,

the time required to generate an authority key, the time

required to generate a user key, and the size of the resulting

user and authority keys. An unmodified version of

Bethencourt, et al.’s (2006) CP-ABE implementation is

used as a control and comparison for our results when

possible.

Tests for the results in the following sections were

performed on an Ubuntu Linux based system with the

following specifications:

 CPU: Intel Core2 Quad CPU Q6700 @ 2.66GHz

 RAM: 4GB
 Hard Drive: 30GB
 Network: 10/100/1000Mbps

4.2.1 Attributes Required and Key Size

Unlike the keys used in CP-ABE, attribute authority keys

require the attributes to create any possible value for a

variable attribute. This leads the performance inequities

between our extension and CP-ABE when the size of the

authority keys, or the time required to generate authority

keys, is compared. As shown in Figure 4.2, more

attributes are required for each variable attribute in an

authority key than in an equivalent CP-ABE key (where b is

the number of bits in a variable’s value). However, the

number of attributes required for a user key in our extension

is one less than in CP-ABE.

Figure 4.2: Constant attributes required to represent a given

number of variable attributes in a authority key and a CP-ABE user

key.

The number of attributes is also directly proportional to the

size of the authority and user keys as shown in Figure 4.3.

As with the number of attributes, despite the large size of

the authority key, the size of a user key in extended CP-

ABE is slightly smaller than the equivalent in CP-ABE.

Figure 4.3: Size of an authority key vs. the size of a CP-ABE

user key in megabytes for an INT_MAX of 264.

2 D. Servos et al.

4.2.2 Time Required to Generate an Attribute Authority

Key

The time in seconds to generate an authority key is shown in

Figure 4.4. Authority key generation is linear with the

number of attributes, though, still significantly longer than

CP-ABE user key generation (Figure 4.5). However, the

times are not easily compared as authority key generation is

normally only performed once during the initialization of

the master authority, while user key generation may be

required frequently. As expected, the time required to create

authority keys containing only constant attributes is

significantly smaller than a key containing the same number

of variable attributes as a variable attribute may be seen as b

* 2 constant attributes.

Figure 4.4: Time to generate an attribute authority key in

seconds vs. number of variable and constant attribute.

4.2.3 Time Required to Generate an User Key

Figure 4.5 shows that the time to generate a CP-ABE user

key is almost identical to the time required to generate a

user key by delegation from an authority key via our

UserKeyGen function. Additionally, Figure 4.6 shows that

this will remain true despite the size of the authority key

(assuming the number of attributes in the user key remains

the same). Again the relationship between attributes and

generation time remains linear.

Figure 4.5: Time to generate user key in CP-ABE and Extended

CP-ABE in seconds vs number of variable attributes.

Figure 4.6: Time to generate an Extended CP-ABE user

key in seconds vs number of attributes in the authority key

for a constant number of attributes in the user key.

4.3 Potential Improvements

Our UserKeyGen function and the CP-ABE functions lend

themselves well to parallel processing as there are many

independent calculations required in computing the values

of Di and D`i . The values of Di and D`i for each i in i

US (UserKeyGen) or i S (KEYGEN) may be calculated

independently and in parallel after the random value of r has

been determined, so long as the proper order of the set is

maintained. This allows for the generation of a particularly

large attribute authority key to be set up as a massively

parallel solution, reducing the generation time from hours to

seconds. For user key delegation this allows for the use of

multi core systems (which are becoming common place in

both server and home hardware environments) to reduce

Extended CP-ABE user key generation times to lower than

the generation times in the standard CP-ABE

implementation.

We present the following modifications (Equations 4.1, 4.2,

4.3 and 4.4) to our UserKeyGen function and the CP-ABE

KEYGEN function to allow for parallel processing. For

multi core, or multi CPU systems sharing the same memory,

it is assumed that the area in memory is large enough to fit

the resulting key that is created (e.g. an array of structures

which will hold the value of Di and D`i) and the results are

Extensions to Ciphertext-Policy Attribute-Based Encryption to Support Distributed Environments 9

placed correctly within the block of memory as computed.

For distributed systems it is assumed that a central node will

create a similar block of memory and store the resulting

values correctly as computed. In both cases this should be a

constant time, O(1), operation (as it is the same as inserting

a value into an array). Additionally it is assumed that proper

measures are put in place to properly produced secure

random numbers in parallel.

 ()
 ()

 () ⁄

 ()
 ()
 ()

Equation 4.1: Parallelized version of the KEYGEN function.

keygen_ ()

 ()
 ()

Equation 4.2: keygen_compute function to be run in parallel.

 ()

 (̃)
 ̃ ̃
 ̃

 (̃ ̃)
 ()
 (̃)

Equation 4.3: Parallelized version of the UserKeyGen function.

userkeygen_ (̃ ̃)

 ()

 ̃
 ̃ ()

 ̃

 ̃ ̃ ̃

Equation 4.4: userkeygen_compute function to be run in parallel.

Using the same methodology and system as in section 4.2,

we tested and compared the performance of the parallelized

generation functions with both the standard Extended CP-

ABE and CP-ABE key generation functions. Four

simultaneous threads (each running on a separate CPU core)

were used for the parallelized functions on the same Linux

based system as used in section 4.2. The C++ POSIX

threads API was used to provide threading functionality to

our implementation. As shown in Figure 4.7 and 4.8, the

parallelization of the key generation functions provides a

signification improvement in the time required to generate

both authority and user keys. This improvement allows key

generation to be further scaled by adding additional CPU

cores while maintaining a linear relationship with the

number of attributes. It is likely that more modern systems

with 6 or 8 CPU cores would show additional improvements

in key generation time.

Figure 4.7: Time to generate authority key with standard and

parallelized functions.

Figure 4.8: Time to generate a Extended CP-ABE user key with

standard and parallelized functions (standard CP-ABE generation

time also shown).

4.4 Security

As the encryption and decryption algorithms used in our

extended CP-ABE scheme remain the same as presented in

Bethencourt, et al. (2007), the security of extended CP-ABE

may also be proven secure under the generic bilinear group

model (Boneh, Boyen and Goh 2005) (as is shown in

appendix A of (Bethencourt, Sahai, and Waters, 2007) for

the decryption and encryption functions). As with

Bethencourt, et al. (2007) and with Boneh and Franklin

(2007)’s IBE schemes (Boneh, and Franklin, 2001)

extended CP-ABE can be extended to be secure against a

chosen ciphertext attack by applying the techniques from

(Fujisaki and Okamoto, 1999).

5 Conclusions

This paper introduced extensions to Bethencourt, et. al.'s

CP-ABE scheme for providing CP-ABE in a disturbed

environment, in which multiple authorities are granted a set

of constant and variable attributes which they may further

2 D. Servos et al.

delegate to their users. Some subset of these attributes may

be shared with other authorities such that access policies

may be created that allow foreign users to decrypt

documents. Additionally, a “not equals” operation was

added to CP-ABE as well as a means for creating policies

based on the user’s origin (i.e. which attribute authority

delegated their key). Details on how revocation and

expiration are enforced where discussed.

The performance of a prototype implementation of our

extensions based on Bethencourt, et. al.'s CP-ABE

implementation was evaluated and found to scale linearly

with the number of attributes. An additional improvement to

the key generation and delegation algorithms to support

distributed processing (e.g. on multiple CPU cores) was

presented which further improved the performance of

extended CP-ABE to the point of matching the original CP-

ABE implementation.

Appendix

A. CP-ABE Functions from Bethencourt, et. al. (2007)
 ():

 (()

)

 ()

Equation A.1: Setup Function

 ()

 ()

 (̃ ()

 ()
 (())

 ()
)

Equation A.1: Encrypt Function

 ()
“Starting with the root node [τr] the algorithm sets
qr (0) = s. Then, it chooses dr other points of the
polynomial qr randomly to define it completely. For

any other node x, it sets qx(0) = qparent(x)(index(x))
and chooses dx other points randomly to completely
define qx.”(Bethencourt, et al., 2007).

 ()

 () ⁄

 ()

 ()

Equation A.3: KeyGen Function

 ()
 (())

 ̃

 ()

Equation A.4: Decryption Function

 ()

 ()

 ()

 ()

 ()

 ∏

()

 ()

 ()

Equation A.5: Recursive DecryptNode Function

References

 Urowitz S., Wiljer D., Apatu E., Eysenbach G.,

DeLenardo C., Harth T., Pai H. and Leonard K.

J., (2008) 'Is Canada ready for patient accessible

electronic health records? A national scan', BMC

Medical Informatics and Decision Making, vol. 8,

no. 1, p. 33.

 Mohammed S., Servos D. and Fiaidhi J., (2010) 'HCX:

A Distributed OSGi Based Web Interaction

System for Sharing Health Records in the Cloud,'

in International Conference on Web Intelligence

and Intelligent Agent Technology (WI-IAT),

IEEE/WIC/ACM, Toronto, ON.

 Mohammed S., Servos D. and Fiaidhi J., (2011)

'Developing a Secure Distributed OSGi Cloud

Computing Infrastructure for Sharing Health

Records,' in AIS'11 Proceedings of the Second

international conference on Autonomous and

intelligent systems, Burnaby, BC.

 Zhang Q., Cheng L. and Boutaba R., (2010) 'Cloud

computing: state-of-the-art and research

challenges,' Journal of Internet Services and

Applications, pp. v. 1, i. 1, p. 7-18.

 Armbrust M., Fox A., Griffith R., Joseph A. D., Katz

R., Konwinski A., Lee G., Patterson D., Rabkin

A., Stoica I. and. A. M Zaharia, (2009) 'Above

the Clouds: A Berkeley View of Cloud', UC

Berkeley Reliable Adaptive Distributed Systems

Laboratory, Berkeley.

 Itani W., Kayssi A. and Chehab A., (2009) ' Privacy as

a Service: Privacy-Aware Data Storage', in

Eighth IEEE International Conference on

Dependable, Autonomic and Secure Computing,

Extensions to Ciphertext-Policy Attribute-Based Encryption to Support Distributed Environments 11

Chengdu.

 Chow R., Golle P., Jakobsson M., Masuoka R., Molina

J., Shi E. and Staddon J., (2009) 'Controlling Data

in the Cloud: Outsourcing Computation without

Outsourcing Control', in Proceedings of the 2009

ACM workshop on Cloud computing security,

Chicago.

 Bethencourt J., Sahai A. and Waters B., (2007)

'Ciphertext-Policy Attribute-Based Encryption',

in IEEE Symposium on Security and Privacy,

2007. SP '07. , Berkeley, CA.

 Goyal V., Pandey O., Sahai A. and Waters B., (2006)

'Attribute-based encryption for fine-grained

access control of encrypted data', in Proceedings

of the 13th ACM conference on Computer and

communications security (CCS '06), Alexandria.

 Boneh D., Boyen X. and Goh E.J., (2005) 'Hierarchical

identity based encryption with constant size

ciphertext', EUROCRYPT, pp. volume 3494 of

Lecture Notes in Computer Science, p. 440–456.

 Boneh D. and Franklin M., (2001) 'Identity-Based

Encryption from the Weil Pairing, Advances in

Cryptology'.

 Fujisaki E. and Okamoto T., (1999) 'Secure integration

of asymmetric and symmetric encryption

schemes', in CRYPTO '99 Proceedings of the

19th Annual International Cryptology, California.

