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1 Introduction 
The increasingly popular cloud computing paradigm brings 

new opportunities to reduce hardware, maintenance and 

network costs associated with the traditional infrastructure 

required to offer large scale internet based services or even 

smaller localized application and storage solutions. 

However, with the dynamic scalability, reduced risk and 

potential cost savings comes a loss of control that creates 

new challenges for adopting cloud based infrastructure.  

In particular, in the case of the health care industry, the need 

for cost efficient and low maintenance Electronic Health 

Record (EHR) systems is clear (Urowitz et al., 2001). 

However, while frameworks and architectures exist for 

managing and scaling access to EHRs in the cloud (Itani, 

Kayssi and Chehab, 2009) (Chow et al., 2009), data privacy 

and enforcing access control policies which comply with 

local and global privacy laws are significant barriers 

blocking adoption of public cloud offerings. 

 

Ensuring data privacy on a potentially untrustworthy public 

cloud is still one of the open research problems in cloud 

computing (Mohammed, Servos and Fiaidhi, 2010) 

(Mohammed, Servos and Fiaidhi, 2011) Traditional data 

privacy measures (such as employing traditional symmetric 

encryption schemes) are ineffective on the cloud platform, 

while current research efforts  tend to focus on solutions 

requiring additional trusted computing or cryptographic 

coprocessors hardware (Zhang, Cheng, and Boutaba, 2010) 

(Armbrust, et al. 2009) not yet offered by many public cloud 

providers.  

Attribute based encryption, and in particular ciphertext-

policy attribute-based encryption (Bethencourt, Sahai, and 

Waters, 2007) offers the potential for access policies to be 

embedded in encrypted documents and enforced both on 

and off the cloud, independently of the system which stores 

the documents. This is accomplished by assigning users’ 

sets of “attributes” (strings associated with bit encoded 

values) which describe their role in relation to the embedded 

access policy and encrypting documents not with a key but a 

policy that must be met for decryption of the document to 

occur (this process is further detailed in section 2). 

This paper outlines a novel extension to ciphertext-policy 

attribute-based encryption (CP-ABE) for protecting records 

both on and off the cloud. Our extensions add support for 

multiple distributed attribute authorities, capable of 

generating user keys, which share some given subset of 

attributes for which they are authorized. We introduce a new 

hierarchal authorization data structure (section 3.1) for 

attribute authorities which dictate the private and shared set 

of constant and variable attributes a given authority will 

have permission to delegate to users. A new not equals 

operation (section 3.5) for CP-ABE is detailed and its 

implications described, performance improvements (section 

4.3) are discussed and tested, and a means for creating 

policies based on a user’s origin (to which attribute 

authority they belong) is detailed (section 3.6). We present 

an implementation of our scheme (section 4.1) and evaluate 

its performance against Bethencourt, et al.’s (2007) CP-

ABE implementation. A security evaluation and discussion 

is also presented in section 4.4. 

 

2 Ciphertext-Policy Attribute-Based Encryption 

 
2.1 Description 

 

Ciphertext-policy attribute-based encryption (CP-ABE) 

(Bethencourt, Sahai, and Waters, 2007) offers a novel 

encryption scheme which continues the work on attribute 

based encryption to enable a complex tree based access 

policy to be embedded in the ciphertext rather than the key 

as with Key-Policy Attribute-Based Encryption (KP-ABE) 

(Goyal et al., 2006). CP-ABE also introduces “variable 

attributes” which use a set of traditional attributes to 

represent a value that can be evaluated with more complex 

operations (including >, <, <. > and =). This allows for users 

to be assigned attributes (e.g. “IS_DOCTOR” or “AGE = 

36”) and documents to be encrypted with complex access 

policies based on these attributes such as “(IS_DOCTOR 

OR IS_LAB_TECH) AND AGE >= 18 OR 

(IS_SYSTEM_ADMIN AND USER_LEVEL > 6)”.   

For the cloud, and other instances where a remote system 

may not be trusted to enforce access control, CP-ABE offers 

a promising alterative. With access polices embedded in the 

cipher text, encrypted documents may be stored and 

replicated across multiple untrusted system, while keeping 

the plain text secure under the given policy. Also, unlike 

traditional public key or symmetric encryption, where a 

document may only be decrypted by a single key (either the 

user’s private key or the symmetric key used to encrypt the 

document), CP-ABE offers an alternative where each user 

has their own secret key (based on the attributes they have 

been assigned) which can decrypt any document for which 

there attributes pass the embedded access policy. 

CP-ABE accomplishes this through five cryptological 

functions, SETUP(), ENCRYPT(PK, M, A), 

KEY_GENERATION(MK, S), DECRYPT(PK, CT, SK) 

and DELEGATE(SK, S) (see appendix A for detailed 

definitions of each). Operation of the system proceeds as 

show in Figure 2.1:    
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Figure 2.1:  Operation of the CP-ABE cryptographic 

protocol. 

 

1. During the initialization phase the SETUP function is 

called by the master authority to create the public (PK) and 

master (MK) keys. The public key is published publicly and 

the master key is kept in secret by the master authority and 

only used during user key generation. 

2. After initialization, the master authority may generate a 

secret key (SK) for a user of the system using the 

KEY_GENERATION function which requires the master 

key and the set of attributes (S) assigned to the user by the 

authority and send the key to the user over a secure channel. 

3. At any time after the public key has been published, a 

user may encrypt a document (M) for a given access policy 

(A) using the ENCRYPT function with the public key. The 

resulting ciphertext (CT) may be stored or shared with any 

system while remaining under the given access policy. 

4. Once a user has a secret key, the public key and a cipher 

text they wish to decrypt they may do so using the 

DECRYPT function iff the set of the attributes in their 

secret key pass the access policy used during encryption. 

5. Once a user has a secret key, they may delegate a subset 

of the attributes in their secret key to a third party using the 

DELEGATE function. 

 

2.2 Issues for Distributed Systems 

 

For distributed systems CP-ABE presents a significant 

bottleneck in the form of a single master authority 

responsible for all user key generation which proves 

problematic for both scalability and security reasons (i.e. if 

the master authority is compromised all encrypted 

documents are). Also it is required that a trusted party be 

made responsible for running the master authority and 

assigning all attributes to users of the system. In cases 

where a distributed system involves multiple parties (such 

as an EHR system which shares records between multiple 

health care institutions) a single party may not be available 

that is capable of securely, accurately and efficiently 

assigning attributes and generating user keys for all users. 

Our extensions aim to resolve these issues by allowing each 

party (or domain) to have control over their own set of 

attributes, their own user key generation and attribute 

assignment while still sharing a common public key and set 

of attributes with the other domains making sharing of 

encrypted documents between domains possible. 

Additionally, this allows for a more scalable and trusted 

system as user key generation and attribute assignment is 

moved from a single point of failure and bottlenecking to 

multiple attribute authorities divided among the domains 

that comprise the system.  

 

 

 

3 Our Extension’s Constructions 

 

Our construction extends the SETUP, DELEGATE and 

KEYGEN functions of the CP-ABE model to enable multi-

authority user key assignment and delegation, while keeping 

the encryption (ENCRYPT) and decryption (DECRYPT) 

functions the same to enable backwards compatibility with 

CP-ABE.  Each attribute authority is delegated a set of 

attributes for which it has authority over (power to further 

delegate the attributes to users) from an offline master 

authority. The master authority is only required during the 

initial creation of a new user authority or attribute. 

 

The following sub-sections outline the extensions to each 

function. As with CP-ABE’s constructions;   is a bilinear 

group of prime order p and size k for which g is the 

generator of    and              denotes the bilinear 

map. 

 

3.1 Authority Hierarchy 

The authority hierarchy is a logical layout of all attribute 

authorities in the system and their parent/child relationships 

to each other. A child authority is granted all attributes of its 

parent and ancestors up to the root authority. Thus the root 

authority contains the subset of attributes shared by all 

authorities in the hierarchy. An example hierarchy is shown 

in Figure 3.1. 

 

 
Figure 3.1: Example authority hierarchy with logical 

authorities root, and auth2, and real authorities auth1, auth3 

.. auth6. 
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The authority hierarchy data structure can be seen as a tree 

(AH) with root node root(AH) representing the root 

authority. Decedents of the root node represent authorities 

authorized to assign both attributes assigned to their 

ancestors (up to the root authority/node) and attributes from 

a private set available only to that authority and it’s 

decedents in the hierarchy. Each node, x, in the hierarchy 

tree contains a unique name referred to as a domain 

(domain(x)), the number of constant attributes 

(constants(x)) assigned to the authority, the number of 

variable attributes (variables(x)) assigned to the authority, 

the parent of the authority (parent(x)) and a type of “real” or 

“logical” (type(x)). Nodes of type “logical” are considered 

to only be place holders for attributes shared among their 

decedents. A logical authority is not granted an authority 

key and exists only in the representation of the hierarchy 

AS. For example, the authority “root” in Figure 3.1 will 

cause the creation of 100 constant attributes and 100 

variable attributes which will be shared with all descendants 

but will not be issued an authority key. Authority “auth1” 

will be assigned 10 constant and 50 variable attributes and 

will inherit all 200 attributes from the root authority. Similar 

“auth3” and “auth4” will be assigned their designated 

number of attributes and inherit all attributes from “auth1” 

(their parent) and the root authority (auth1’s parent). Like 

the root authority, auth2 is logical and will not be granted an 

authority key but will share it’s attributes with its 

descendants auth5 and auth6 (which also inherit attributes 

from the root authority via auth2). 

 

3.2 Setup 

 

Our setup function (Equation 3.1) takes the authority 

hierarchy tree (AH) and begins as CP-ABE does, using the 

same master key (MK) and public (PK) definitions (only 

differing in excluding f from PK and referring to it as the 

delegation key) but adds the generation of the set of 

attribute authority keys (ASK) based on the attribute set 

returned by the AuthAttSet function (Equation 3.2) for each 

authority in the given hierarchy. As with Equation A.1 (see 

appendix A),   is a chosen bilinear group of prime order p 

and     are randomly generated integers in   . We define 

auth_index(x) as a function which returns an arbitrary but 

always unique integer greater than 0 and less than 

INT_MAX for a given authority hierarchy node x. 
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Equation 3.1: Setup Function 
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Equation 3.2: Recursive AuthAttSet Function 

 
In addition to creating the master and public keys, the Setup 

function calls the recursive function AuthAttSet to obtain 

the set (AS) containing sets for each authority containing 

the attributes to be assigned to the respective authority. An 

authority’s attribute set is determined by recursively 

descending the authority hierarchy and creating a set of 

attribute names for each node (with attribute sets for 

descendants of that node being unioned with the parent 

node). Next the auth_key attribute is added (explained 

further in section 3.6), the variable attributes are converted 

to constant attributes (via ConvertAtts(S)), the set is added 

to AS, and AuthAttSet is called on all children of the node. 

With the set of attribute sets complete, the Setup function is 

able to compute the set of secret keys (ASK) for each 

authority using the KEYGEN function. 

As attributes may not be initially assigned a particular 

meaning or purpose in the system, a generic attribute name 

is created which may be later mapped to a more appropriate 

human readable name. Constant attribute names are created 

by appending the authority’s domain, the string “_c” and a 

number (1 through constants(x) inclusively). Variable 

attributes are named similarly (by appending the domain, 

string “_v” and a number) but are also given the value of 0 

and INT_MAX (INT_MAX being equal to 2b - 1 and b 

being the number of bits allowed in the attribute values). 

To satisfy the policy tree during decryption, variable 

attributes are split into multiple constant attributes each 

representing a possible value of a single bit of the variable’s 

value. Thus, assigning the same variable attribute to an 

authority with a value of 0 and INT_MAX is equivalent to 

assigning it the constant variable’s for every possible value 

of a bit, making up the variable attribute’s value. This 

allows an authority to assign any value for a variable 

attribute to a user (by delegating the subset of constant 

attributes which make up the correct value in bits for the 

delegated value) while only having to hold a key containing 

b * 2 constant attributes (where b is the number of bits in a 

variable’s value). An example of this can be seen in Table 

3.1 where an authority with the variable attributes 
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“auth1_v0 = 0” and “auth1_v0 = 15” also contains the 

subset of constant attributes for “auth1_v0 = 10”. 

Variable 
Attributes 

Constant 
Attributes 

auth1_v0 = 
10 

auth1_v0_ 
flexint_1xxx 

auth1_v0_ 
flexint_x0xx 
auth1_v0_ 
flexint_xx1x 
auth1_v0_ 
flexint_xxx0 

auth1_v0 = 0 

auth1_v0 = 
15 

auth1_v0_ 
flexint_1xxx 

auth1_v0_ 

flexint_0xxx 
auth1_v0_ 
flexint_x0xx 
auth1_v0_ 
flexint_x1xx 
auth1_v0_ 
flexint_xx1x 
auth1_v0_ 
flexint_xx0x 
auth1_v0_ 
flexint_xxx0 
auth1_v0_ 
flexint_xxx1 

Table 3.1: Table showing the equivalent constant attributes 

for a given set of variable attributes. Assuming INT_MAX 

of 15 (i.e. 4 bit variable values). 

 

3.3 User Key Generation 

 

Unlike in CP-ABE, a user’s key is not generated via the 

KEYGEN function but delegated off an attribute authority’s 

key. This process (detailed in Equation 3.3, where function 

H is a hash function,  ̃, and  ̃  are random numbers and US 

is the set of attributes to be assigned to the user) is the same 

as the DELEGATE function from CP-ABE but includes the 

delegation key, f, as it is omitted from the public key due to 

the changes in the Setup function. Also, unlike attribute 

delegation in CP-ABE, where a key owner may only 

delegate the value of an attribute variable for which they 

were assigned, an attribute authority is able to assign any 

value of for an assigned variable attribute. This is made 

possible due to the way variable attributes are assigned in 

our Setup function (i.e. via the attribute authority being 

assigned constant attributes for all possible values of bits in 

a variable attribute’s value). 

              (            )  
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Equation 3.3: UserKeyGen Function 

 

Further delegation of attributes at the user level is controlled 

by limiting access to the delegation key. A user with the 

delegation key may further delegate their attributes into a 

new key using the same UserKeyGen function with their 

key and a subset of attributes from the set they were 

assigned, but may never add more attributes, change 

attribute values or combine the attributes with another users. 

Allowing users to further delegate their attributes is no more 

insecure than the possibility of users sharing a key or the 

information which it decrypts but has the advantage of 

enabling users to share only parts of their key (some subset 

of their assigned attributes) when necessary. 

 

3.4 Encryption and Decryption 

 

Encryption and decryption proceed similar to CP-ABE (so 

much so that it is backwards compatible with CP-ABE) but 

with a key difference from the CP-ABE implementation. As 

one of the performance enhancements presented in the CP-

ABE implementation, an additional constant attribute is 

added for each variable attribute containing the decimal 

value of the variable. For example, for the variable attribute 

“auth1_v0 = 10” the constant attribute “auth1_v0_10” 

would be added. This allows for a performance increase 

when the policy tree contains an equals requirement on a 

variable attribute (e.g. requiring that auth1_v0 being equal 

to 10). As this would require each authority being assigned 

a constant attribute for each possible value from 0 to 

INT_MAX (adding significantly to the time to generate and 

the size of an authority key) we have omitted this 

enhancement and a policy tree is created which requires all 

attributes that make up the value in binary to be present (e.g. 

requiring that a key contains attributes for 

auth_flexint_1xxx, auth_flexint_x0xx, flexint_xx1x and 

flexint_xxx0 rather than just the attribute auth1_v0_10 

being present). 

3.5 Not Equals 

 

The CP-ABE scheme presented by Bethencourt, et al. 

(2007) lacks a not equals operation. Such an operation is 

important for at least two cases; the first being excluding a 

particular user based on an attribute that most or all users 

possess some value for. For example if we assign every user 

in the system the variable attribute “user_id” for some 

unique value to that user (e.g. “user_id = 4727236”), not 

equals would then allow us to exclude a particular user from 

decrypting a file by creating an access policy such as 
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“user_id ≠ 9833344”. The second case is for user and 

authority key revocation. As with the first case, a policy like 

“user_id ≠ 9833344” could be added to all encrypted 

documents to block a known-to-be-compromised key from 

accessing future files. Similarly, a statement like “auth_key 

≠ 2” could be used to revoke access to a whole authority’s 

user base in the case that the given authority becomes 

compromised. 

For our proposes we may define “not equals” as “equal to 

any valid value but”, meaning that a user must both have the 

given variable attribute and it must not be equal to the given 

value to pass the access policy (users missing the attribute 

completely would also be rejected). We may construct such 

an access tree as follows (for the example of “user_id ≠ 4” 

and an INT_MAX of 15): 

 

 
Figure 3.2: Access tree for user_id ≠ 4 

That is essentially by converting the value to binary, 

“0100”, inverting the 1s and 0s, “1011”, and requiring the 

attribute for each bit. E.g. “1 of (user_id_flexint_1xxx, 

user_id_flexint_x0xx, user_id_flexint_xx1x,  

user_id_flexint_xxx1)”. 

 

3.6 User Origin 

Our scheme provides a means of creating access policies 

based on a given user’s origin (in this case to which 

attribute authority they belong) via the “auth_key” attribute 

added to every authority key in the AuthAttSet function 

(Equation ). Every authority in the hierarchy is assigned a 

unique value of auth_key during authority key creation. It is 

expected that each attribute authority includes this attribute 

in each user’s attribute set. However, even if a dishonest 

authority or user (via delegation of a subset of their key) 

omitted the attribute they would still fail to pass access 

policies requiring or excluding a given auth_key value (as 

the not equals operation requires the attribute be present and 

have at least some value). 

As attribute authorities likely represent different institutions 

or departments in the system, this feature is useful for 

limiting access to or from a given institution/department 

when all other required attributes are shared and no existing 

attribute performs a similar role. Additionally, the 

“auth_key” attribute is used as part of our revocation system 

for revoking compromised authority keys (see section 3.7). 

 

3.7 Revocation 

3.7.1 User Key Revocation and Expiration 

As with the CP-ABE scheme, user keys may be set to expire 

by including a variable attribute, an expiry date and 

ensuring that all encrypted documents contain a policy 

requiring that attribute to be greater than the current date. 

This would effectively limit expired user keys to decrypting 

documents encrypted before the key expired (which may 

already have been decrypted/compromised by the user). 

Revoking the user key then becomes simply a case of not 

renewing the key. Additionally in cases where users have no 

need to view documents past a set date, a lower limit may 

be placed on the expiry attribute to limit access to old 

documents. 

As our scheme adds a not equals operation we are also 

given the option of revoking access to a user by excluding 

an attribute value unique to that user. For example, if all 

users are given a unique value for the variable attribute 

“user_id” one may simply exclude a given user by adding a 

policy such as “user_id ≠ 123456” to deny a user with the id 

123456 the ability to decrypt the document. Even if the user 

removed the “user_id” attribute from their key, they would 

still fail to pass the access policy due to the way not equals 

is defined. 

 

3.7.2 Attribute Authority Revocation and Expiration 

The addition of the “auth_key” attribute in AuthAttSet 

function (Equation ) allows us to deny access to users whose 

key was generated by a set authority (i.e. their origin, see 

section 3.6) as we could an individual user via a “user_id” 

attribute.  If an attribute authority were to become 

compromised, a notice could be posted in a public 

revocation list and future documents could be encrypted 

with the requirement that “auth_key ≠ 5” for example, if the 

authority with an auth_index of 5 was compromised. This 

would effectively prevent any user from that authority from 

decrypting future documents. 

As with user keys, attribute authority keys could also be 

created with a set expiry attribute which would in turn be 

delegated on to its users. However, unlike the user key 

expiry date, which may be set to only days or hours in the 

future an authority key would have to be set to expire 

significantly longer in the future (possibly months or a year) 

as the process for creating authority keys is more costly and 

involves some level of manual intervention by a system 

administrator.   

4 Implementation and Evaluation 
4.1 Implementation 

To test and fully evaluate our extensions to CP-ABE, a C++ 

based implementation was created by modifying 

Bethencourt, et al.’s (2006) CP-ABE implementation, to add 

our extended functions, features and distributed authority 

setup. As our implementation is based on the CP-ABE 

implementation it uses the same PBC library 

(http://crypto.stanford.edu/pbc/) for the algebraic operations 

and only supports Unix and Linux based systems.  

Our Setup (Equation 3.1), AuthAttSet (Equation 3.2) and 

UserKeyGen (Equation 3.3) functions were added to the 

CP-ABE implementation. The constant attribute added for 

each variable attribute containing the decimal value of the 
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variable was removed (see section 3.4) and the 

implementation was split into three components (one for the 

master authority, one for attribute authorities and one for the 

users of the system). A hash table was added to store all 

components of an authority key in memory (mapping an 

attribute name to the values of Dj and D`j (     ( )   and 

    respectively)) for the attribute authority component. This 

allows for the authority key to be read into memory during 

the initialization of the attribute authority rather than read 

from the hard drive for each user key request. As the 

authority key grows linearly in size with the number of 

attributes (Figure 4.1) this becomes a required optimization 

for systems that must fulfill a large number of user key 

generation requests. 

 

 

 
Figure 4.1: Attribute authority key size vs number of variable 

and constant attributes. 

Finally, a Linux daemon was created for the attribute 

authority component which listens for connections on a 

local socket and responds to user key generation requests. A 

Java based client API was also created to communicate with 

attribute authority daemon as well as a Java API which uses 

the user component for encrypting and decrypting strings. 

4.2 Performance Evaluation 

To evaluate the performance of our extensions we examined 

our implementation in terms of number of constant 

attributes required to represent the same variable attribute, 

the time required to generate an authority key, the time 

required to generate a user key, and the size of the resulting 

user and authority keys. An unmodified version of 

Bethencourt, et al.’s (2006) CP-ABE implementation is 

used as a control and comparison for our results when 

possible. 

Tests for the results in the following sections were 

performed on an Ubuntu Linux based system with the 

following specifications: 

 CPU: Intel Core2 Quad CPU Q6700 @ 2.66GHz 

 RAM: 4GB 
 Hard Drive: 30GB 
 Network: 10/100/1000Mbps 

 

4.2.1 Attributes Required and Key Size 

Unlike the keys used in CP-ABE, attribute authority keys 

require the attributes to create any possible value for a 

variable attribute. This leads the performance inequities 

between our extension and CP-ABE when the size of the 

authority keys, or the time required to generate authority 

keys, is compared. As shown in Figure 4.2,     more 

attributes are required for each variable attribute in an 

authority key than in an equivalent CP-ABE key (where b is 

the number of bits in a variable’s value). However, the 

number of attributes required for a user key in our extension 

is one less than in CP-ABE. 

 
Figure 4.2: Constant attributes required to represent a given 

number of variable attributes in a authority key and a CP-ABE user 

key. 

 

The number of attributes is also directly proportional to the 

size of the authority and user keys as shown in Figure 4.3. 

As with the number of attributes, despite the large size of 

the authority key, the size of a user key in extended CP-

ABE is slightly smaller than the equivalent in CP-ABE. 

 
Figure 4.3: Size of an authority key vs. the size of a CP-ABE 

user key in megabytes for an INT_MAX of 264. 
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4.2.2 Time Required to Generate an Attribute Authority 

Key 

The time in seconds to generate an authority key is shown in 

Figure 4.4. Authority key generation is linear with the 

number of attributes, though, still significantly longer than 

CP-ABE user key generation (Figure 4.5). However, the 

times are not easily compared as authority key generation is 

normally only performed once during the initialization of 

the master authority, while user key generation may be 

required frequently. As expected, the time required to create 

authority keys containing only constant attributes is 

significantly smaller than a key containing the same number 

of variable attributes as a variable attribute may be seen as b 

* 2 constant attributes. 

 

Figure 4.4: Time to generate an attribute authority key in 

seconds vs. number of variable and constant attribute. 

 
4.2.3 Time Required to Generate an User Key 

Figure 4.5 shows that the time to generate a CP-ABE user 

key is almost identical to the time required to generate a 

user key by delegation from an authority key via our 

UserKeyGen function. Additionally, Figure 4.6 shows that 

this will remain true despite the size of the authority key 

(assuming the number of attributes in the user key remains 

the same). Again the relationship between attributes and 

generation time remains linear. 

 
Figure 4.5: Time to generate user key in CP-ABE and Extended 

CP-ABE in seconds vs number of variable attributes. 

 
Figure 4.6: Time to generate an Extended CP-ABE user 

key in seconds vs number of attributes in the authority key 

for a constant number of attributes in the user key. 

 
4.3 Potential Improvements 

Our UserKeyGen function and the CP-ABE functions lend 

themselves well to parallel processing as there are many 

independent calculations required in computing the values 

of  Di and D`i . The values of Di and D`i for each i in  i   

US (UserKeyGen) or  i   S (KEYGEN) may be calculated 

independently and in parallel after the random value of r has 

been determined, so long as the proper order of the set is 

maintained. This allows for the generation of a particularly 

large attribute authority key to be set up as a massively 

parallel solution, reducing the generation time from hours to 

seconds. For user key delegation this allows for the use of 

multi core systems (which are becoming common place in 

both server and home hardware environments) to reduce 

Extended CP-ABE user key generation times to lower than 

the generation times in the standard CP-ABE 

implementation. 

We present the following modifications (Equations 4.1, 4.2, 

4.3 and 4.4) to our UserKeyGen function and the CP-ABE 

KEYGEN function to allow for parallel processing. For 

multi core, or multi CPU systems sharing the same memory, 

it is assumed that the area in memory is large enough to fit 

the resulting key that is created (e.g. an array of structures 

which will hold the value of  Di and D`i) and the results are 
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placed correctly within the block of memory as computed. 

For distributed systems it is assumed that a central node will 

create a similar block of memory and store the resulting 

values correctly as computed. In both cases this should be a 

constant time, O(1), operation (as it is the same as inserting 

a value into an array). Additionally it is assumed that proper 

measures are put in place to properly produced secure 

random numbers in parallel. 

                  (       )  
         ( ) 

   (   )  ⁄  
                        
           

                               (       )  
                         () 
   (   ) 

 

Equation 4.1: Parallelized version of the KEYGEN function. 

 
keygen_       (       )  

         ( ) 
           ( )  
       
            
 

Equation 4.2: keygen_compute function to be run in parallel. 

 
                       (           )  

         ( ̃) 
 ̃     ̃   
 ̃                         
            

                                            ( ̃  ̃       )  
                         () 
    (   ̃) 

 

Equation 4.3: Parallelized version of the UserKeyGen function. 

 
userkeygen_       ( ̃  ̃       )  

         ( ) 

   ̃         
 ̃    ( )  

 ̃        
  

 ̃     ̃   ̃   
 
Equation 4.4: userkeygen_compute function to be run in parallel. 

 
Using the same methodology and system as in section 4.2, 

we tested and compared the performance of the parallelized 

generation functions with both the standard Extended CP-

ABE and CP-ABE key generation functions. Four 

simultaneous threads (each running on a separate CPU core) 

were used for the parallelized functions on the same Linux 

based system as used in section 4.2. The C++ POSIX 

threads API was used to provide threading functionality to 

our implementation. As shown in Figure 4.7 and 4.8, the 

parallelization of the key generation functions provides a 

signification improvement in the time required to generate 

both authority and user keys. This improvement allows key 

generation to be further scaled by adding additional CPU 

cores while maintaining a linear relationship with the 

number of attributes. It is likely that more modern systems 

with 6 or 8 CPU cores would show additional improvements 

in key generation time. 

 

 
Figure 4.7: Time to generate authority key with standard and 

parallelized functions. 

 
Figure 4.8: Time to generate a Extended CP-ABE user key with 

standard and parallelized functions (standard CP-ABE generation 

time also shown). 

 
4.4 Security 

As the encryption and decryption algorithms used in our 

extended CP-ABE scheme remain the same as presented in 

Bethencourt, et al. (2007), the security of extended CP-ABE 

may also be proven secure under the generic bilinear group 

model (Boneh, Boyen and Goh 2005) (as is shown in 

appendix A of (Bethencourt, Sahai, and Waters, 2007) for 

the decryption and encryption functions). As with 

Bethencourt, et al. (2007) and with Boneh and Franklin 

(2007)’s IBE schemes (Boneh, and Franklin, 2001) 

extended CP-ABE can be extended to be secure against a 

chosen ciphertext attack by applying the techniques from 

(Fujisaki and Okamoto, 1999). 

 

5 Conclusions 

This paper introduced extensions to Bethencourt, et. al.'s 

CP-ABE scheme for providing CP-ABE in a disturbed 

environment, in which multiple authorities are granted a set 

of constant and variable attributes which they may further 
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delegate to their users. Some subset of these attributes may 

be shared with other authorities such that access policies 

may be created that allow foreign users to decrypt 

documents. Additionally, a “not equals” operation was 

added to CP-ABE as well as a means for creating policies 

based on the user’s origin (i.e. which attribute authority 

delegated their key). Details on how revocation and 

expiration are enforced where discussed.  

The performance of a prototype implementation of our 

extensions based on Bethencourt, et. al.'s CP-ABE 

implementation was evaluated and found to scale linearly 

with the number of attributes. An additional improvement to 

the key generation and delegation algorithms to support 

distributed processing (e.g. on multiple CPU cores) was 

presented which further improved the performance of 

extended CP-ABE to the point of matching the original CP-

ABE implementation. 

 

Appendix 

A. CP-ABE Functions from Bethencourt, et. al. (2007) 
             (): 

                                            

                           

              (           (   )      
 

 ) 

              (    )                                 
 
Equation A.1: Setup Function 

          (      )   
                      

                   (    ) 
                   

              (   ̃    (   )                                 

                                   ( )   
   (   ( ))

  ( )
) 

 
Equation A.1: Encrypt Function 

                    (   )  
“Starting with the root node [τr] the algorithm sets 
qr (0) = s. Then, it chooses dr other points of the 
polynomial qr randomly to define it completely. For 

any other node x, it sets qx(0) = qparent(x)(index(x)) 
and chooses dx other points randomly to completely 
define qx.”( Bethencourt, et al., 2007). 
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Equation A.3: KeyGen Function 
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Equation A.4: Decryption Function 
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Equation A.5:  Recursive DecryptNode Function 
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